

Study of Coal waste heap fires in Provence-Gardanne Coal basin

Photos : waste heap Bramefan, 1998

with collaboration of Mélanie Clouard

Naze - Nancy Masalehdani & Jean-Luc Potdevin Naze-Nancy.Masalehdani@univ-lille1.fr

Sauvaires (2001)

Emission of admixed gas and water vapour around

Défends (2001)

Lignite waste heaps: Molx

Height: 65-85 m
Slope: 33
Granulometry: 20-400 mm

- > Materials:
 - Unburnt rock debris
 - Limestone 60%
 - Sandstone 5-10%

Rejected lignite 15-20%
Burnt debris «Clinkers»
Fly ash

MAIN OBJECTIVES

Determine the mineralogy & the chemical compositions

- unburnt original rock debris
- burnt rock debris «clinkers»
- rejected lignite
- Investigate the spontaneous combustion
- Determine the secondary-by products

ANALYTICAL METHODS

- X-Ray Diffraction (XRD)
- Optical microscope (OM)
- Scanning electron microscope Energy-dispersive spectroscopy (SEM-EDS)
- Electron microprobe wavelength dispersion spectrometry (EMP-WDS)
- Raman spectroscopy (RS)
- Chemical analyses (ICP-FIMS-INAA)

RESULTS

- > Unburnt Limestone debris components
 - Minerals
 - □ Calcite CaCO₃
 - □ Dolomite CaMg(CO₃)₂
 - □ Pyrite FeS₂
 - □ Marcasite FeS₂
 - □ Quartz SiO₂
 - $\square \quad \text{Kaolinite } Al_2 Si_2 O_5 (OH)_4$
 - Fossils
 - Ostracods & Lamellibranches
 - Organic matter

Mineral assemblages

- Calcite Dolomite Pyrite Marcasite Quartz Kaolinite
- Calcite Pyrite Quartz Kaolinite

Marcasite (iron disulphide) FeS₂

ICPS-MS Analysis: Variegated Limestone

Wt%	SiO ₂	Al ₂ O ₃	CaO	Na ₂ O	К ₂ О	Fe ₂ 0 ₃	MgO	MnO	P ₂ O ₅	TiO ₂	H ₂ O	LOI	Total
AVE.	3.17	1.25	42.02	0.041	0.34	3.05	1.39	0.69	0.047	0.045	6.4	43.13	85.82

ppm	As	Ag	Au	Ba	Be	Bi	Br	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er
AVE.	44.1	0.5	0.00	71.2	0.1	0.01	10.5	0.5	6.43	1.1	14.5	0.85	9.30	0.41	0.22

ppm	Eu	Ga	Gd	Ge	Hf	Hg	Но	In	Ir	La	Lu	Мо	Nb	Nd	Ni
AVE.	0.10	1.90	0.44	0.56	0.26	0.06	0.1	0.00	3.71	0.72	0.05	3.2	1.07	2.81 (8.30

	Pb	Pr	Rb	Sb	Sc	Se	Sm	Sn	Sr	Та	Tb	Th	Tl	Tm	U
AVE.	4.37	0.80	8.37	0.34	1.65	3	0.53	1	634	0.6	0.70	1	0.08	0.03	1.8

ppm	v	ស	Y	Yb	Zn	Zr
AVE.	14	0.5	2.80	0.60	14.3	9.30

ICPS-MS Analysis: Dark-gray Sandstone

ppm	As	Ag	Au	Ba	Be	Bi	Br	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er
AVE. (1.8	0.3	0.02	10	0.1	0.1	3.6	0.5	3.01	1 (11	0.1 (3.7	0.05	0.03
ppm	Eu	Ga	Gd	Ge	Hf	Hg	Но	In	Ir	La	Lu	Мо	Nb	Nd	Ni
AVE.	0.03	1	0.07	0.5	0.02	0.12	0.04	0.1	5	48	0.09	2	0.2	2	3.7
	-1		-1	61							-1	-1	-1		

ppm	PD	PT	RD	SD	SC	se	SIII	Sn	Sr	Та	TD	In	TT	Tu	U
AVE.	3	0.2	1	0.2	0.16	3	0.11	1	11	0.01	0.13	0.08	0.05	0.00	0.39

ppm	v	W	Y	Yb	Zn	Zr
AVE.	0.05	0.5	0.5	0.04	7.4	1.3

Wt%	С	S	N	н
AVE.	7.56	0.51	0.12	0.47

>ICPS-MS analyses: Rejected Lignite

Proximate	Wt%(daf)
Moisture	7.67
Ash	4.10
Volatile Matter (VM)	45.89
Fixed Carbon	42.43
Ultimate	
Carbon	62.32
Hydrogen	6.26
Nitrogen	1.60
Oxygen	20.43
Pyritic sulphur	0.04
Sulphate sulphur	0.17
Organic sulphur	5.08
Total sulphur	5.29

Trace elements	ppm
As	184
Ва	419
Cd	1
Со	10
Cr	75
Cu	56
Нд	0.024
Mn	205
Мо	146
Ni	81
Pb	100
Rb	83
Sb	6
Se	3
Sr	7092
Zn	145
Zr	3
V	94

Mineral matter (wt%)

SiO ₂	Al ₂ O ₃	CaO	Na ₂ O	К ₂ О	Fe ₂ 0 ₃ *	MgO	P ₂ O ₅	TiO ₂	SO ₃ **	*T = 44
19.26	12.41	22.80	0.46	0.60	4.26	6.92	1.68	0.31	29.62	** Tot

*Total **"Fe"** expressed as **Fe₂O₃** **Total **"S** "expressed as **SO**₃

Mineral assemblages: Kaolinite, Gypsum, Pyrite / Marcasite, Calcite, Dolomite

Organic Petrography & Reflectance of the macerals

Vitrinite texture

Organic petrography

- small size maceral groups
 - o liptinite (cutinite and liptodetrinite)
 - o inertinite (fusinite and semi-fusinite)

The reflectance values of macerals

R _{random}	0,38	st.dev	0,03
R _{max}	0,40	st.dev.	0,03

Indicating low reflectance, corresponding to subbituminous C to lignite in rank

Hand specimens

Gastropods" are visible fossils, which are enriched in Aragonite (CaCO₃)

Prone to oxidation

Pyrite /marcasite oxidation in contact with air

Sulphide oxidation: Secondary by- Products

Waste heap n 1

Copiapite: $Fe^{2+}Fe^{3+}4(SO_4)_6(OH)_2 \cdot 20(H_2O)$ Halotrichite: $Fe Al_2 (SO_4)_4 \cdot 22H_2O$ Gypsum: $(CaSO_4)_2 \cdot 2H_2O$ \succ Pyrite / Marcasite (FeS₂) Oxidation and sulphate formation

$$\begin{array}{l} 4\text{FeS}_2 + 7\text{O}_2 + \text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + 4\text{SO}_4^{-2} + 4\text{H}^+ \\ 4\text{Fe}^{2+} + \text{O}_2 + 4\text{H}^+ \rightarrow 4\text{Fe}^{3+} + 2\text{H}_2\text{O} \\ & (\text{control} + 2\text{C}) \\ & ($$

T ≥ 22 C 1 atm. pH 3- 4

Early oxidation stage

 $\begin{array}{l} 5Fe^{2+}SO_4 \ .7H_2O_{(s)} + H_2SO_4 + O_2 \rightarrow Fe^{2+}Fe^{3+}4(SO_4)_6(OH)_2 \cdot 20(H_2O) + 11 \ H_2O_{(s)} + 11 \ H$

 $\begin{array}{c} Fe^{2+} SO_4.7H_2O_{(s)} \rightarrow Fe^{2+}SO_4.4H_2O_{(s)} + H_2O_{(s)} \\ \hline \\ Iron \ sulphate \ (melanterite) \end{array} \rightarrow \begin{array}{c} Fe^{2+}SO_4.4H_2O_{(s)} + H_2O_{(s)} \\ \hline \\ Iron \ sulphate \ (rozenite) \end{array}$

 $\begin{array}{l} 5Fe^{2+}SO_4.4H_2O_{(s)}\text{+}H_2SO_4\text{+}O_2 \rightarrow Fe^{2+}Fe^{3+}4(SO_4)_6(OH)_2\text{-}20(H_2O)\text{+}11\text{ }H_2O_{(s)}\text{-}H_2O_{(s)}\text{+}H_2SO_4\text{+}O_2 \rightarrow Fe^{2+}Fe^{3+}4(SO_4)_6(OH)_2\text{-}20(H_2O)\text{+}11\text{ }H_2O_{(s)}\text{-$

Late oxidation stage: decrease in Fe²⁺: Al ratio

 $Fe^{2+} + 4SO_4^{2-} + 2AI^{3+} + 22H_2O \rightarrow FeAI_2(SO_4)_4...22H_2O$

Aluminium-iron-sulphate (Halotrichite)

COAL FIRES

- Both heaps have undergone spontaneous combustion
- Combustion initiated within the slopes and the crest

Infrared thermographic analyses

Effects of combustion on the sites' materials

- Strength,
- Chemical composition,
- Mineralogical components,
- Coherence and
- Colour

Rock debris along the slope of the waste heap n 1 (south section) had undergone backing, then was transformed into more coherent debris.

Dominant Wind direction

а

Mineralogy & Composition of « Clinkers »

1,3 & 5: Calcite, Anyhydrite, Hematite, Quartz
2: Calcite, Anyhydrite, Aragonite, Hematite, Quartz
4 & 6: Hematite, Calcite, Gypsum, Quartz

Clinker sample n 2

Mineral assemblage: Apatite - Calcite - Hematite - Anyhydrite - Quartz Clinker (waste heap n 1)

ICPS-MS Analyses: Baked debris « Clinkers »

Wt%	SiO ₂	Al ₂ O ₃	CaO	Na ₂ O	K ₂ O	Fe ₂ O ₃	MgO	MnO	P ₂ O ₅	TiO ₂	H ₂ O	LOI	Total
N 2	0.14	0.11	61.73	L.D	L.D	L.D	1.09	0.06	0.08	L.D	11	38.37	101.5

ppm	As	Ba	Be	Bi	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
N 2	1.43	61.9	L.D	L.D	0.00	1.01	1.00	L.D	L.D	5.73	0.09	0.06	0.03

ppm	Ga	Gd	Ge	Hf	Hg	Но	In	La	Lu	Мо	Nb	Nd	Ni
N 2	L.D	0.106	L.D	0.032	0.00	0.023	L.D	7.63	0.008	0.65	0.086	0.52	4.32

ppm	Pb	Pr	Rb	Sb	Se	Sm	Sn	Sr	Та	Tb	Th	Tm	υ
N 2	0.90	0.152	L.D	0.17	L.D.	0.107	L.D	628.4	0.011	0.017	0.068	0.01	0.60

ppm	v	W	Y	Yb	Zn	Zr
N 2	1.40	LD	0.81	0.05	L.D	1.38

Wt%	SiO ₂	Al_2O_3	CaO	Na ₂ O	K ₂ O	Fe ₂ O ₃	MgO	MnO	P ₂ O ₅	TiO ₂	H ₂ O	LOI	Total
N 6	4.84	2.27	43.24	0.04	0.14	7.80	1.29	0.10	0.28	0.11	7.29	36.43	96.52

ppm	As	Ba	Be	Bi	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
N 6	122.4	146.4	0.00	0.00	0.00	17.63	7.32	20.74	0.71	8.11	2.02	1.00	0.59
ppm	Ga	Gd	Ge	Hf	Hg	Но	In	La	Lu	Мо	Nb	Nd	Ni
N 6	4.15	2.32	0.38	0.48 (0.003	0.371	0.00	7.63	0.130	4.01	1.51	11.01	25.67
ppm	Pb	Pr	Rb	Sb	Se	Sm	Sn	Sr	Та	Tb	Th	Tm	υ
N 6	2.28	2.80	4.83	3.02	L.D	2.53	0.764	717.2	0.146	0.367	1.601	0.141	10.21

ppm	v	ធ	Y	Yb	Zn	Zr
N 6	28.26	0.22	11.52	0.90	21.37	17.51

Thermal decomposition Mineral phase transformation

Components in unburnt debris

- □ Quartz SiO₂
- □ Calcite CaCO₃
- Dolomite CaMg(CO₃)₂
- □ Pyrite FeS₂
- □ Marcasite FeS₂
- **Kaolinite** $Al_2Si_2O_5(OH)_4$

Heating path

T C 65 - 900

Cooling path

- Fossils
- Organic matter

Components in clinkers

- □ Quartz SiO₂
- □ Calcite CaCO₃
- Aragonite CaCO₃
- Anhydrite CaSO₄
- □ Hematite Fe₂O₃
- **Gypsum** $(CaSO_4)_2.2H_2O$

Weathering

□ Apatite Ca₅(PO₄)₃F

Thermal decomposition during combustion

EMP-WDS: Ponctual trace element analysis (ppm)

		As	Co	Cu	Hg	Ni	Pb
SS							
	Org.matter	16.7	N.D.	1.7	N.D.	N.D.	N.D.
	Quartz	20	N.D.	10	N.D.	N.D.	N.D.
LM							
	Calcite	119	N.D	3.4	N.D	N.D	N.D
	Pyrite 🥚	234	283	62	151	59	1
	Pyrite	623	53	92	29	98	1
	Org.matter	36.2	16.8	12.2	8.2	4.4	15.6
Clinker *							
	Calcite	3	25	10	110	3.4	13.4
	Hematite	97	266.7	44.5	51.75	128.5	83

Primary causes of spontaneous combustion in Molx waste heaps Factors:

- Chemical
 - Lignite

- o petrographic constituents: high in the reactive vitrinite
- o chemical composition
 - high in moisture & in sulphur (pyrite, marcasite, organic)
- Rock debris' composition
 - o high in sulphur (pyrite, marcasite) & carbon
- Fly ash composition
 - o enriched in lime, available sulphur (e.g. anyhydrite, pyrite)

Physical

- o granulometry, compaction, geometry (size & shape)
- o permeability & porosity of the rock debris

Environmental

 Atmospheric conditions: available air, wind direction, ambient temp. solar radiation

Others: Lightining & grass fire

Spontaneous combustion: exothermic reactions

Lignite (40 - 250 C)

Coal + oxygen \rightarrow Coal-oxygen complex + heat Coal-oxygen complex \rightarrow CO + CO₂ + H₂O + heat C + O₂ \rightarrow CO₂ + 394 kJ mol⁻¹ 2C + O₂ \rightarrow 2CO + 170 kJ mol⁻¹ • If the heat is dissipated, the temperature of the coal will not increase

• If the heat is not dissipated then the temperature of the coal will increase

Pyrite/Marcasite (chemical oxidation): in Lignite & Limestone 65 - 400 C

Catalysed by the presence of bacteria «Acidithiobacillus ferrooxidans »

 $\begin{array}{rcl} 2 FeS_2 + 7O_2 + 16H_2O & \rightarrow & 2H_2SO_4 + 2FeSO_4.7H_2O + 1324 \text{ kJ mol}^{-1} \\ 2 FeS_2 + 7O_2 + 2H_2O & \rightarrow & 2H_2SO_4 + 2FeSO_4 + 260 \text{ kJ mol}^{-1} \\ 4 FeS_2 + 11O_2 & \rightarrow & 2Fe_2O_3 + SO_2^{\uparrow} + 3412 \text{ kJ mol}^{-1} \end{array}$

A layer of coarser particles at the base and edges of waste heap resulted in increased ventilation passing through the inner part. The situation was particularly aggravated by prevailing hot, moist winds, and led to a higher risk of spontaneous combustion most probably in the summer months

© Masalehdani & Clouard (2011)