

maîtriser le risque pour un développement durable

Séminaire 2019 de l'OHM Bassin Minier de Provence Fuveau, 15 novembre 2019

Modified bauxite residue as filter material to upgrade phosphorus removal in small wastewater treatment plants

Cristian Barca*, Dario Scanu, Nicola Podda, Laurent Poizat, Pierre Hennebert *cristian.barca@univ-amu.fr

Context: phosphorus pollution

Phosphorus (P) is an essential nutrient for biomass growth in aquatic ecosystems. Excessive intake of P in water bodies may lead:

- Abnormal growth of algae and aquatic plants (algal bloom);
- Degradation of water quality (eutrophication).

Maine-et-Loire (France)

Lake Winnipeg (Canada)

Images from Internet

Context: phosphorus pollution

Phosphorus (P) is an essential nutrient for biomass growth in aquatic ecosystems. Excessive intake of P in water bodies may lead:

- Abnormal growth of algae and aquatic plants (algal bloom);
- Degradation of water quality (eutrophication).

Treatment requirements for small and medium (10000-100000 P.E.) wastewater treatment plants (WWTP) in sensitive areas (directives 91/271/EEC and 2000/60/EC):

3

- Total phosphorus concentration (TP): 2 mg P/L;
- Minimum percentage of reduction: 80%;
- > National and local requirements are often stricter (even < 0.5 mg P/L)!

Domestic wastewater in Western Europe (Comber et al., 2013; Boutin et Eme, 2017):

- *Per capita* loadings of P: 2.0-2.6 g P per capita per day;
- TP concentration (fresh wastewater): 10-18 mg P/L ;
- > The need to develop low cost techniques to treat P, especially for small WWTPs.

Context: shortage of natural resources

Nowadays fertilizer production industry strongly depends on natural deposits of P such as apatite rocks. Prospective studies indicate that (Cordell *et al.*, 2011):

- The peak of P production from phosphate rocks will occur around 2020;
- P is very likely to become a critical resource by 2050;
- > There is an urgent need to identify alternative renewable P resources.

Scenario of long term phosphorus demand (Cordell *et al.*, 2011)

Context: shortage of natural resources

Nowadays fertilizer production industry strongly depends on natural deposits of P such as apatite rocks. Prospective studies indicate that (Cordell *et al.*, 2011):

5

- The peak of P production from phosphate rocks will occur around 2025;
- P is very likely to become a critical resource by 2050;
- > There is an urgent need to identify alternative renewable P resources.

P retention and recovery from domestic wastewater represents a promising strategy to (Tarayre et al., 2016; Cieślik and Konieczka, 2017):

- Reduce P supply to sensitive ecosystems (risk of eutrophication);
- Overcome the shortage of natural deposits of P (e.g. apatite rocks);
- Maximum potential of P recovery: 0.7-0.9 kg P per capita per year.

Context: P treatment in small WWTP

6

Most common treatment systems for small communities in France (< 2000 P.E.):

> Two stage vertical flow reed planted constructed wetland (VFCW):

Two stage VFCWs in France provide (Molle et al., 2005 and 2008):

- High removal (> 80%): COD, suspended solid (TSS), and Kjeldahl nitrogen (TKN);
- Poor removal (< 30%): nitrate (N-NO₃) and total phosphorus (TP);
- Addition of separate filter units containing materials with high affinity for P binding.

Context: reactive materials

Reactive materials tested for P binding (Johansson Westholm, 2006; Vohla et al., 2011):

7

- Natural materials: limestone, zeolite, iron rich sand, etc.;
- Man made: Filtralite®, Phosphorite®, Polonite®, etc.;
- Industrial byproducts and waste: steel slag, fly ash, bauxite residue, etc.
 Most of these materials present high Ca, Al and/or Fe content.

Main mechanisms of P binding (Chazarenc et al., 2009; Barca et al., 2012):

- Precipitation of Ca-P complexes followed by crystallization on mineral surface;
- Adsorption on AI and Fe oxides and hydroxides.

Modified bauxite residues as filter material

Project BAUXFILTER (ALTEO, LabEx DRIIHM OHM-BMP, 2018-2019):

- Laboratory M2P2, group Waste and Wastewater Treatment, Aix-en-Provence;
- INERIS-ARDEVIE, Aix-en-Provence;
- Company ALTEO, Gardanne (Provence, France).

Bauxite residue: waste of aluminum industry (also known as red mud):

- Worldwide production (Prajapati et al., 2016): 90 million tons per year;
- Chemical composition (ALTEO): Fe₂O₃ (50%), Al₂O₃ (14%), CaO (5,5%), Na₂O (3,5%);
- High content of NaOH: high pH leachates;
- Modified bauxite residue (MBR): treated by addition of gypsum to reduce pH < 8.5.</p>

Bauxite residue storage area of Gardanne with Sainte-Victoire Mountain (Provence, France)

> Saint-Victoire Mountain, Paul Cézanne (1839-1906)

8

Aim of the project: developing the use of filters filled with MBR (MBR filters) to retain P from the effluents of small WWTPs.

9

Main challenges:

- To reduce P supply to receiving waters; •
- To valorize an industrial waste as filter material; •
- To retain and recover P from wastewater. •

Systemic approach involving experiments at different scales of investigation:

- I. Batch experiments: kinetics and equilibrium capacities of P sorption;
- II. Lab-scale column experiments: P removal performances under dynamic conditions;

(10)

- **III.** Lab-scale filter experiments: long term hydraulic and treatment performances.
- Integration of results and development of a systemic model.

Integration of results

Material & methods: batch experiments

Batch kinetic experiments: to determine the effect of different wastewater composition on equilibrium capacities and rate constants of P sorption:

- Ratio liquid to solid (ASTM D 4646): 20 L/kg;
- Initial volume of solutions: 0.7 L;
- Agitation mode: rotary agitation at 2.5 rpm;
- Room temperature: $20 \pm 2^{\circ}$ C;
- Water samples taken at: 0.5, 1, 2, 4, 6, and 24 h.

Solutions: 3 different water matrix at 4 different initial P:

- Deionized water plus P: 10, 50, 100, and 200 mg P/L;
- Tap water plus P: 10, 50, 100, and 200 mg P/L;
- Tap water plus 40 mg N-NO₃/L plus P: 10, 50, 100, and 200 mg P/L.

(11)

Results & discussion: batch experiments

(12)

Pseudo 2nd order model (Ho and McKay, 1998):

- q_e: equilibrium sorption capacity (mg P/g MBR);
- q_t: sorption capacity at time t (mg P/g MBR);
- k₂: rate constant of pseudo-second order (g mg⁻¹ h⁻¹).

One or more reactants become limiting: process controlled by the reaction.

Results & discussion: batch experiments

(13)

• K₂ decreases and q_e increases with increasing initial P: saturation capacity not achieved;

Different water matrix did not appear to affect P sorption kinetic.

Material & methods: column experiments

Main objectives: to determine and describe the effect of aerobic and anoxic conditions on:

- P removal performances;
- P removal mechanisms.

Two MBR columns were continuously fed according to a HRTv of 1 day for the full period of 5 months of operation:

- Day 1 to 54: synthetic solution:
 - Column A: tap water + 10 mg P/L + 40 mg N/L (KNO₃);
 - Column B: tap water + 10 mg P/L + 40 mg N/L (KNO₃) + <u>500 mg COD/L</u> (glucose);
- Day 55 to 140: real effluent from a small WWTP*:
 - Column A: raw real effluent;
 - Column B: real effluent + <u>500 mg COD/L</u>.

*Effluent from the two stage VFCW of Rougiers (Var, France), 1500 P.E.

Results & discussion: DO concentrations

Column A: aerobic conditions

(15)

Synthetic solution (day 1-54):

- Outlet DO: 1.9 \pm 1.9 mg O₂/L Real effluent (day 55-140):
- Outlet DO: 2.6 \pm 1.0 mg O₂/L

Column B: anoxic conditions

Synthetic solution (day 1-54):

- Outlet DO: $0.6 \pm 0.6 \text{ mg O}_2/\text{L}$ Real effluent (day 55-140):
- Outlet DO: 0.2 \pm 0.1 mg O₂/L

Results & discussion: TP removal

Column A: aerobic

Synthetic solution (day 1-54):

(16)

- Inlet TP: 10.3 \pm 0.5 mg P/L
- Outlet TP: $0.1 \pm 0.1 \text{ mg P/L}$ Real effluent (day 55-140):
- Inlet TP: 5.5 ± 1.5 mg P/L
- Outlet TP: 0.1 \pm 0.1 mg P/L

Column B: anoxic

Synthetic solution (day 1-54):

- Inlet TP: 10.3 \pm 0.5 mg P/L
- Outlet TP: $0.1 \pm 0.1 \text{ mg P/L}$ Real effluent (day 55-140):
- Inlet TP: 5.5 ± 1.7 mg P/L
- Outlet TP: 0.9 \pm 0.9 mg P/L

MZP2 Docul

Results & discussion: TP retention capacity

TP retention capacities over 140 days:

- Column A: 0.63 mg P/g MBR
- Column B: 0.61 mg P/g MBR

TP retention efficiency over 140 days:

- Column A: 98 % → more efficient!
- Column B: 91 %

17

Average outlet TN over 140 days:

- Column A: 11.9 mg N/L \rightarrow removal 66 %
- Column B: 4.3 mg N/L \rightarrow removal 87 %

Column B shows higher TN removal:

Heterotrophic denitrification under anoxic conditions

Results & discussion: Fe concentrations

Column A: aerobic

Synthetic solution (day 1-54):

• Outlet Fe: 0.28 ± 0.69 mg Fe/L Real effluent (day 55-120):

(18)

• Outlet Fe: 0.21 ± 0.17 mg Fe/L

Column B: anoxic

Synthetic solution (day 1-54):

• Outlet Fe: 0.23 ± 0.07 mg Fe/L Pool offluent (day 55 420)

Real effluent (day 55-120):

- Outlet Fe: 1.26 \pm 0.61 mg Fe/L
- > Fe release from MBR

Material & methods: chemical extractions

Chemical extractions: to identify main mechanisms of P removal. Three different samples of MBR:

- Raw MBR: MBR before the use to treat water;
- MBR A: MBR from the inlet of column A;
- MBR B: MBR from the inlet of column B.
- 1. Aqua regia extractions (EN 13346, 2000): to determine total P content.
- 2. Sequential extractions (Moir et al., 1993; Barca et al., 2014): to quantify:
 - i. Bicarbonate extractable P: weakly bound P;
 - ii. Hydroxide extractable P: leachable Al and Fe bound P;
 - iii. Diluted acid extractable P: leachable Ca bound P;
 - iv. Hot concentrated acid extractable P: P in stable residual compounds*.
- 3. Amorphous Fe extractions (EN 12782-1, 2009): reactive Fe under amorphous form.

After 140 days of column operation

*Mainly attributed to: Ca-P crystals and/or organic P.

19

Results & discussion: P removal mechanisms

20

Material & methods: pilot filter experiments

Main objectives:

- To evaluate long term P removal performances;
- To investigate long term P removal mechanisms.
- Lab-scale filter:
- Total volume: 31.5 L;
- MBR volume: 22.5 L.
- Filter operation:
- Feeding mode: continuous sub-horizontal flow;
- Theoretical HRTv: 1 day;
- Feeding solution: tap water + 10 mg P/L + 40 mg N/L (KNO₃).

The filter has been operated for a total period of 30 months over the last 5 years (experiment started at IMT-Atlantique, Nantes) (alternating periods of 6 months of operation and 6 months of rest)

Results & discussion: pilot filter experiments

Inlet and outlet TP during the last 6 months of operation (Feb-Jul 2019):

VI2P2

Filter performances (Feb-Jul 2019):

23

- TP removal efficiency: 77 ± 6 %;
- Outlet TP: 2.1 ± 0.6 mg P/L;
- Outlet pH: 8.1 \pm 0.2.
- No clogging during the full period of operation.

Calculated P retention capacity over the full period of 30 months of operation:

2.9 g P/kg MBR (< than batch exp.): filter may work several years before saturation.</p>

Outlet TP stabilized around a value of 2 mg P/L after 24 months of operation:

P removal controlled by chemical equilibria of ion species in solution.

Results & discussion: pilot filter experiments

24

M2P2

Molar ratio Ca removed / P removed during the last 6 months of operation (Feb-Jul 2019):

Experimental molar ratio Ca removed / P removed: 1.4 - 3.9 Molar ratio Ca/P of most common Ca-P complexes: 1 - 1.67 Co-precipitation of Ca-P and CaCO₃ under alkaline conditions (Barca *et al.*, 2014)

Conclusions

MBR is an efficient material to remove P from wastewater:

- High P retention capacity (> 4 g P/kg MBR);
- High long time P removal efficiency (about 80 % after 30 months of filter operation);

25

- Almost neutral effluent pH (7-8);
- Good hydraulic conductivity.

Main mechanism of P removal:

- i. Ca-P precipitation, filtration and crystallization of Ca-P complexes;
- ii. P binding to Al and/or Fe compounds.

Anoxic (biotic) conditions can promote mobilization of Fe-compounds, thus:

- Promoting Fe-P binding;
- Leading to Fe releases from the filter.
- > A strict control of aerobic conditions is recommended.

Perspectives

Field scale experiments: to evaluate long term (5-10 years) hydraulic and P removal performances of MBR filters under real operating conditions.

P recovery experiments: to evaluate the most efficient technique to recover P from MBR filters after saturation of P retention capacity.

Photos: field scale steel slag filters (PhD Barca, 2012), European Project SLASORB